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A STEADY-STATE ANUYSIS O F  THE "LAMINAR-INSTABILITY" 

PROBLEN DUE TO HEATING PARA-HYDROGEN IN 

LONG, SLENDER TUBES 

By David P. Harry, I11 

Lewis Research Center 

SUMMARY 

A n  analysis  of s teady-state  pressure-drop cha rac t e r i s t i c s  i n  long, s lender ,  
c i r c u l a r  tubes r e l a t e d  t o  t h e  " laminar- instabi l i ty"  problem i s  presented. Re- 
sults obtained by de ta i l ed  numerical computations a r e  based on r ea l - f lu id  para- 
hydrogen propert ies  and assumed laminar t o  turbulen t  and turbulent  t o  laminar 
flow t r a n s i t i o n  c r i t e r i a .  

Correlation parameters a r e  derived from approximate solut ions of flow and 
heat- t ransfer  r e l a t ions  and a r e  used t o  general ize  ca lcu la ted  pressure drop over 
the  Reynolds number range of mixed turbulent  and laminar flows. 

Results ind ica te  t h a t  t he  minimum pressure drop occurs within or near the  
range of mixed turbulent  and laminar flows. For t he  long, slender tubes con- 
sidered, therefore,  a r u l e  of thumb i s  suggested: The minimum pressure drop, 
and consequently the  po ten t i a l  i n s t a b i l i t y ,  occurs j u s t  below the  flow where 
tube e x i t  conditions become laminar. The temperature r a t i o  of the  f l u i d  a t  t he  
poin t  of minimum pressure drop va r i e s  upwards from the  values of about 5, pre-  
d ic ted  by laminar flow c r i t e r i a ,  t o  15, for example. A s  a r e s u l t ,  heat ex- 
changers may not encounter laminar - ins tab i l i ty  problems u n t i l  temperature r a t i o s  
a r e  higher than previously expected. 

The range of conditions invest igated includes i n l e t  ressures  of 1 t o  1000 
pounds per  square inch absolute,  i n l e t  temperatures of 50' t o  150' R, tube 
lengths  up t o  6 f ee t ,  and tube diameters from 0.05 t o  0.3 inch. 
var ied  t o  produce temperature r a t i o s  up t o  80, and i n l e t  flow or Mach number 
va r i e s  over a range of four decades. 

Heat input  i s  

It i s  shown t h a t  the  laminar i n s t a b i l i t y  cons t i t u t e s  l i t t l e  problem a t  high 
pressure l eve l s  (hundreds of lb/sq i n . )  where design Mach numbers should exceed 
the values a t  minimum pressure drop by f ac to r s  of hundreds. 
f o r  example, below atmospheric pressure,  the  minimum pressure drops and the  as- 
sociated i n l e t  Mach numbers occur throughout the  range considered p r a c t i c a l  op- 
e ra t ing  conditions. Consequently, t he  laminar i n s t a b i l i t y  i s  po ten t i a l ly  present  
during steady operation a t  low pressures whenever the  w a l l -  t o  f l u i d - i n l e t  tem- 
perature  r a t i o  i s  high. 

A t  low pressures,  



INTRODUCTION 

The appl ica t ion  of nuclear energy t o  rocke t  propulsion introduces t h e  use 
of high-power s o l i d  t o  gas hea t  exchangers with l a r g e  temperature r a t i o s ,  f o r  
example, 40, and with thousands of p a r a l l e l  flow passages. The tendency of such 
systems t o  amplify mald is t r ibu t ions  i n  flow and temperature conditions is  gen- 
e r a l l y  recognized. 
changers r e f l e c t s  d i r e c t l y  on t h e  average propel lan t  temperature obtainable, 
within given mater ia l  cons t ra in ts ,  t o  l i m i t  t h e  performance of t he  propulsion 
system. 

The inherent  s e n s i t i v i t y  of high-temperature-ratio heat ex- 

One f ace t  of t h e  ove ra l l  design problem i s  t h e  i n s t a b i l i t y  of laminar flow 
i n  p a r a l l e l  passages, or t h e  so-called ' ' laminar-instabil i ty" problem. 
analyses of t h i s  problem a r e  ava i lab le  i n  the  l i t e r a t u r e ,  fo r  example, r e f e r -  
ences 1 and 2 .  Because t h e  d i f f i c u l t y  i n  maintaining favorable flow and temper- 
a tu re  d i s t r i b u t i o n s  with laminar flow i s  well  known, it i s  normal t o  design heat 
exchangers t o  operate with turbulen t  flow. Nevertheless, laminar flow will most 
ce r t a in ly  be encountered i n  the  heat exchanger during low-flow operation, e i t h e r  
f o r  low-power continuous runnirg or as i s  assoc ia ted  with s t a r t u p  or shutdown 
cycles. 

Various 

Ln t he  published analyses, such as those of Gruber and Hyman ( r e f .  1) and 
Bussard ( r e f .  2 ) ,  it i s  conventional t o  a s soc ia t e  t h e  po ten t i a l  laminar i n s t a -  
b i l i t y  with negative values of t he  r a t e  of  change i n  pressure drop with respec t  
t o  weight flow at constant heat input; t h a t  i s ,  with assumed steady flow and 
constant heat addition, decreases i n  t h e  mass flow y i e l d  increases i n  t h e  pres- 
sure  drop. Although t h e  dynamic behavior under these  conditions i s  not c l ea r ly  
defined,- it i s  generally G r e e d  t h a t  t he  i n s t a b i l i t y  phenomenon i s  r e l a t e d  t o  
the  negative slope. Gruber and Hyman show t h a t  t h e  negative slope occurs only 
with laminar flow and temperature r a t i o s  exceeding 3.7 f o r  a i r  (or 4.7 for hy- 
drogen). 

This r epor t  p resents  a study of t he  pressure-drop cha rac t e r i s t i c s  of i n -  
t e r e s t  and employs th ree  techniques of ana lys i s :  

/ 

(1) Steady-flow and hea t - t ransfer  r e l a t i o n s  a re  solved on the  bas i s  of r e a l -  

P a r t i c u l a r  emphasis i s  given t o  the  t r a n s i t i o n  from turbulen t  t o  
f l u i d  para-hydrogen proper t ies  by numerical i n t eg ra t ion  (aided by a d i g i t a l  com- 
puter program). 
laminar flow along the  tube tha t  r e s u l t s  from increased v i scos i ty  a t  higher tem- 
peratures.  
formulation. 

The ca lcu la t ions  a r e  i t e r a t i v e  ( t r i a l  and e r ro r )  hnd use an  open - 

( 2 )  An approximate so lu t ion  i s  obtained i n  closed, in tegra ted  form t h a t  i s  
s i m i l a r  t o  those of references 1 and 2. Trends based on laminar  flow a r e  pre- 
sented and discussed; however, laminar flow conditions of ten  do not occur i n  the  
range of i n t e r e s t ,  and therefore  the  trends do not generally apply. 

(3) The r e s u l t s  of t h e  closed-form so lu t ion  a r e  used t o  derive co r re l a t ing  
parameters, which a r e  then used t o  co r re l a t e  t he  r e s u l t s  of t he  numerical calcu- 
l a t i o n s  f o r  laminar, mixed, and turbulen t  flow conditions. 

2 



The reader is cautioned to use care in drawing conclusions based on the correla- 
tion of analytical results without verification from experimental data. 

Tubes ranging from 0.05 to 0.3 inch in diameter and from 2 to 6 feet in 

Power inputs are varied 
length are considered for pressure levels f r o m  1 to 1000 pounds per square inch 
absolute and inlet temperatures from 50° to 150' R. 
consistent with para-hydrogen temperature ratios up to 80. 

ANALYSIS 

Consider first the steady flow of a homogeneous fluid in a segment of heat- 
exchanger passage that is essentially one dimensional; that is, the y- and 
z-components of velocity u are negligible. (a1 symbols are defined in ap- 
pendix A.) For a fluid density p and a cross-sectional area A the conserva- 
tion of mass is expressed as 

and the weight flow rate w is constant. The conservation of momentum in the 

P 
T 
P 
U 

absence of mechanical or gravitational forces is expressed as 

where f is the Fanning friction factor and the hydraulic radius rh is 
1/4 diameter for a circular cross section. 
input to both the weight of fluid and the heat-transfer surface area. The terms 
are related as 

It is convenient to refer the heat 

where 

Q 

q 

power per unit of surface area, Btu/(sec)(sq ft) 

power per pound of fluid, ft/sec 

3 
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The entropy change i n  t h e  f l u i d  is  r e l a t e d  t o  t h e  hea t  input  
increase due t o  f r i c t i o n  by 

q and t h e  entropy 

or, subs t i t u t ing  f o r  t h e  entropy change (ref. 3, e.g.) gives 

These r e l a t ions ,  which represent  t h e  conservation of m a s s  (eq. (l)), momen- 
tum (eq. ( 2 ) )  , and an energy r e l a t i o n  (eq. (4)),  form t h e  bas i s  of both t h e  
closed-form and numerical results. 

Numerical i n t eg ra t ion  of t h e  flow equations i s  performed by stepwise i t e r a -  
t i o n  techniques. 
s t e p  ( i n  open form) as 

A s ta te  equation i s  solved independently a t  each i t e r a t i o n  

The values of p, cv, H, p, and k a r e  approximately the  para-hydrogen proper- 
t i e s  discussed i n  references 4 t o  7 and a r e  computed as shown i n  reference 8. 

The Fanning f r i c t i o n  f ac to r  f f o r  t h e  computations herein i s  assumed as 
follows : 

Laminar flow: 

!The Poi seu i l l e  form i s  

1 6  
f = -  

R e  

Turbulent flow: 

The K&m& or K&dn-Nikuradse formulation with modifications f o r  use with 
high film- t o  bulk-temperature r a t i o s  (Tr/Tb > 1) as suggested i n  reference 9 i s  

4 



I n  both cases, t he  Reynolds number i s  evaluated as 

where t h e  f i lm v iscos i ty  pf i s  evaluated a t  
w a l l  and bulk temperatures. Flow i s  considered laminar a t  Reynolds numbers up 
t o  2100 or turbulent  down t o  about 1000 with the hys te res i s  loop shown i n  f ig-  
ure  1. Therefore, a laminar flow remains laminar u n t i l  t he  Reynolds number ex- 
ceeds 2100, and turbulent  flow remains turbulent  u n t i l  t he  f r i c t i o n  f ac to r  i n  
laminar flow i s  l a rge r  than t h a t  i n  turbulent  flow. 

Tf = (Tw -I- T-t-,)/2, t he  average of 

For steady flow, with the  imp l i c i t  assumption of no w a l l  heat capacity, t he  
power t ransfer red  t o  the  f l u i d  i s  d i r e c t l y  the  power generated i n  the  s o l i d  heat 
exchanger, or 

‘generated = %o f l u i d  

The w a l l  temperature i s  then computed from 

The surface coef f ic ien t  h i s  assumed as  follows: 

Laminar flow (ref. 10): 

where x i s  t h e  distance from t h e  entrance t o  the  passage. 

Turbulent flow ( r e f .  11 and others) : 

m 0.8pr0.333 - = 0,023 Re k 

The terms are evaluated at  f i l m  conditions, and the  hys te res i s  i n  laminar- 
turbulent  t r a n s i t i o n  i s  as s t a t e d  f o r  t he  f r i c t i o n  factor .  The length x i n  
equations (sa) and (9b) i s  constrained t o  equal or exceed 1 hydraulic radius.  

5 



Clos e d-Form Appr oximati on 

An approximate so lu t ion  of t h e  flow equations i s  shown i n  appendix B. The 
following assumptions are introduced i n  the  derivation1 

(1) The f l u i d  i s  a per fec t  gas, P = pRT. 

( 2 )  The Mach number i s  low, 9 €< 1. 

(3) The f r i c t i o n  f ac to r  f i s  approximated as f = fo/Ren. 

(4 )  Viscosity p i s  an exponential function of temperature as p = p o p .  

(5) The heat  input d i s t r ibu t ion  i s  constant along the  length of t he  passage, 
s o  t h a t  Q(x) = $0. 

The in tegra ted  r e l a t i o n  fo r  pressure drop is ,  from appendix B, 

where t h e  f l u i d  temperature r a t i o  a i s  

The f i r s t  term represents  the  momentum pressure drop and t h e  second t h e  
Because both t e r m s  include the  coef f ic ien t  f r i c t i o n a l  pressure drop. 

previously assumed s m a l l ,  t he  region of v a l i d i t y  i s  impl i c i t l y  a region of small 
pressure drops. 

M2, a term 

i s  given i n  (*) Q, pl, T1 
The algebra of d i f f e ren t i a t ing  the  r e l a t i o n  f o r  

appendix B, It is shown t h a t  

(1) The momentum pressure drop always increases with weight flow but  i s  
general ly  s m a l l  w i t h  respect  t o  t h e  f r i c t i o n a l  pressure drop. 

(2) The f r i c t i o n a l  pressure drop can decrease with increases  i n  weight flow 
whenever the  temperature r a t i o  i s  l a rge  and n(m + 1) > 1, where m and n a re  
t h e  exponents describing the  var ia t ion  of v i scos i ty  with temperature and f with 
Re, respectively.  

(3)  The negative slope i n  f r i c t i o n a l  drop w i l l  occur f o r  condition (2)  
whenever 

m n + 2  
1 - m n - n  7 > -  

These s t a b i l i t y  c r i t e r i a  fo r  t h e  f r i c t i o n a l  pressure drop axe p lo t t ed  for  a 
s e r i e s  of temperature r a t i o s  i n  f igu re  2(a). Below t h e  curve for mn + n = 1, 
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t h e  flow would be s t ab le .  
becomes a stronger function of temperature; t h a t  is ,  m increases,  ( 2 )  as the  
f r i c t i o n  fac tor  becomes a stronger function of Reynolds number ( n  
and (3) as the  temperature r a t i o  increases.  

The flow tends t o  become unstable (1) as the  v i scos i ty  

increases) ,  

For most gases, t he  v i scos i ty  var ies  with temperature t o  powers l e s s  than 1. 
For hydrogen, m 
exponents l e s s  than 1 /2  i s  always s tab le .  

i s  i n  the range 1/3 t o  1. Turbulent flow with Reynolds number 
- 

Because t h e  s t a b i l i t y  of flow i n  the laminar flow regions, n = 1, i s  depen- 
dent on t h e  temperature r a t i o  
d e t a i l  i n  f igure  Z(b).  Again, increases  i n  v iscos i ty  va r i a t ion  with temperature 
or temperature r a t i o  tend t o  make the  flow unstable. With respect  t o  f r i c t i o n a l  
pressure drop, i f  t he  momentum pressure-drop terms a r e  ignored, as shown i n  f ig-  
ure  2(b) ,  t he  flow could become unstable a t  temperature r a t i o s  down t o  3 f o r  an 
m of 1. Also, fo r  temperature r a t i o s  grea te r  than 7, t h e  flow would most cer- 
t a i n l y  be unstable f o r  hydrogen gas i n  laminar heat exchangers. 

T, t he  s t a b i l i t y  c r i t e r i a  a r e  shown i n  grea te r  

The foregoing r e s u l t s  have been obtained without t he  spec i f ica t ion  of length 
or hydraulic radius,  and flow Mach number i s  r e s t r i c t e d  only as s m a l l  with r e -  
spect t o  1. Thus, fo r  a r b i t r a r y  f l u i d  propert ies ,  t he  po ten t i a l  i n s t a b i l i t y  can 
be avoided only by maintaining turbulent  flow o r  by reducing t h e  temperature 
r a t i o .  

Correlation Parameters 

The approximate pressure-drop r e l a t i o n  (eq. (10)) forms the  basis  f o r  de- 
veloping parameters t o  be used i n  cor re la t ing  pressure drop fo r  long, slender,  
heated tubes. 
sure  drop i s  represented as 

With the  momentum pressure-drop term omitted, t he  f r i c t i o n a l  pres- 

With various subs t i tu t ions  from appendix B, including perfect-gas re la t ions ,  
equation (12) i s  expressed as 

Resorting t o  funct ional  var ia t ions  and subs t i tu t ing  f o r  t he  temperature r a t i o  
from equation (B7a) y i e l d  

Final ly ,  assuming t h a t  t h e  coef f ic ien ts  a r e  evaluated a t  bulk f l u i d  conditions a t  
the  tube i n l e t  and introducing shorthand symbols f o r  t he  groupings give 

7 
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The general  a p p l i c a b i l i t y  of t he  co r re l a t ion  technique w i l l  be shown by using the  
r e s u l t s  of numerical ca lcu la t ions .  

RESULTS 

I n  t h e  following discussion, t h e  v a l i d i t y  of t he  cor re la t ion  technique w i l l  
be i l l u s t r a t e d  by attempting t o  general ize  the  r e s u l t s  of open-form numerical 
computations with t h e  parameters $ and cp. Then, with the  use of numerical 
methods alone, some addi t iona l  aspects  of t he  so-called laminitr-instabil i ty 
problem w i l l  be considered, It i s  of p a r t i c u l a r  i n t e r e s t  here t o  evaluate the  
inf luence t h a t  r ea l - f lu id  proper t ies  have on pressure drop and t o  inspec t  some 
p o s s i b i l i t i e s  r e l a t e d  t o  t h e  t r a n s i t i o n  from turbulen t  t o  laminar flow. 
course of t he  discussion, a cursory examination w i l l  be made of t he  e f f e c t s  of 
tube diameter and length,  pressure l eve l ,  heat  input,  and i n l e t  temperature. 

In t he  

Typical I n s t a b i l i t y  Charac te r i s t ic  

To def ine t h e  so-called laminar - ins tab i l i ty  problem m t h e r ,  a typ ica l  ex- 
ample of the  pressure-drop c h a r a c t e r i s t i c  obtained from numerical in tegra t ions  
i s  shown i n  f igu re  3. A spec i f i c  s e t  of conditions i s  assumedn 

Circular-flow-passage diameter, D, in .  . . + . . - . . * . * . , * . 1/10 
Beat input ,  Q, Btu/(sec)(sq f t )  . . . . . . . . . . . . . . . . . . . . . . .  1 
I n l e t  temperature of hydrogen gas, T1, OR . . . . . . . . . . . . . . . . .  50 
I n l e t  pressure,  ply lb / sq  in .  abs . . . . . . . . . . . . . . . . . . . . . .  20 

Results a r e  shown i n  terms of t he  drop i n  s t a t i c  pressure and of t he  i n l e t  
Mach number Mi with logarithmic sca les .  The calculat ions do not include the  
e f f e c t s  of d i ssoc ia t ion  of t he  hydrogen moleculesj the r e s u l t s  a r e  shown as 
dashed curves a t  temperatures where 5 percent or more e r r o r  i n  spec i f i c  heat  i s  
ant ic ipated.  
d i ssoc ia t ion  becomes s ign i f i can t  a t  about 3500' R, or a t  a temperature r a t i o  of 
about 70, as shown i n  f igu re  3 .  

Length, x, f t . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

Ap/p 

For a nominal pressure l e v e l  of 20 pounds per  square inch absolute,  



Results, however, do include the  e f f e c t s  of flow-transit ion c r i t e r i a ,  as 
ind ica ted  i n  f igu re  1. I n  f igu re  3 laminar f r i c t i o n  f ac to r s  and hea t - t ransfer  
coe f f i c i en t s  a r e  used f o r  i n l e t  Mach numbers l e s s  than 0.0031 or  3.1x10-3. A t  
an i n l e t  Mach number of 0.0082 and above, t h e  flow i s  turbulent.  In  t h e  t r a n s i -  
t i o n  region (0.003 < M < 0.008), flow i s  turbulen t  a t  the  i n l e t  as a r e s u l t  of 
assuming f u l l y  developed flow and diameter-based Reynolds numbers and t r a n s i t i o n s  
(changes) t o  laminar flow due t o  t h e  temperature and t h e  v i scos i ty  increase along 
t h e  length  of t h e  flow passage. 

Some i n s i g h t  i n t o  t h e  s ign i f icance  of t h i s  problem i s  gained by using l i n -  
ea r  pressure-drop, temperature-ratio, and Mach number sca l e s  i n  f igu re  4 i n  con- 
trast t o  the  logarithmic sca l e s  of f i gu re  3 f o r  t he  same r e s u l t s .  From t h e  l i n -  
ear  form, it is  obvious t h a t  the  pos i t i ve  slope associated with turbulen t  flow 
occurs over most of t h e  Mach number range, and t h a t  t h e  minimum pressure drop 
occurs a t  a very low flow r a t e .  I n  addition, t he  value of the  pressure drop at  
the minimum i s  low, namely, 1.2 percent. 

Speculation on t h e  nature of t he  laminar i n s t a b i l i t y  i s  poss ib le  i f  only 
steady-state computations a r e  used. To t h i s  end, f i gu re  5 shows t h e  previous 
r e s u l t s  and a curve representing equilibrium pressure drop a t  constant w a l l -  
temperature p ro f i l e .  (In f i g s .  3 and 4 t h e  heat input  Q w a s  constant 'and the  
w a l l  temperature Tw varied; i n  f ig .  5 t h e  curve with a f ixed  Tw p r o f i l e  has 
varying heat i npu t . )  
pressure-drop curve has a pos i t i ve  slope and does not r e f l e c t  p o t e n t i a l  i n s t a -  
b i l i t y .  Therefore, t h e  r eve r sa l  i n  t he  constant heat input curve r e f l e c t s  a 
low-frequency i n s t a b i l i t y  and not an i n s t a b i l i t y  of higher gas-dynamic frequen- 
c i e s .  In  other words, for a disturbance too  fas t  t o  allow the  temperature of 
t he  w a l l  t o  change, t h e  constant w a l l  temperature c h a r a c t e r i s t i c  applies,  and 
the  slope i s  pos i t ive .  Therefore, a s t a b l e  condition e x i s t s .  

When evaluated a t  a f ixed  wall-temperature p r o f i l e ,  t h e  

It i s  reasonable t o  conjecture fu r the r  t ha t  t he  so-called laminar i n s t a -  
b i l i t y  i s  r e l a t e d  t o  the  response r a t e s  of the  w a l l  heat capacity. There is ,  i n  
addition, experimental evidence ind ica t ing  tha t  t he  unstable condition i s  not 
cyc l i c  i n  nature but i s  more c h a r a c t e r i s t i c  of a "flow stoppage" ( r e f .  12). 
While t h i s  por t ion  of t h e  discussion i s  of i n t e r e s t  i n  defining the  problem, it 
i s  beyond the  scope of t he  present ana lys i s .  

Evaluation of co r re l a t ion  . parameters. - The effectiveness of t he  heat-input 
-- . . . . . - . 

and pressure-drop co r re l a t ing  parameters i n  generalizing pressure-drop r e s u l t s  
over a range of i n l e t  conditions, tube geometries, and heat inputs i s  shown i n  
f igu re  6 f o r  nominal values of t h e  heat-input parameter Cp of 3400 and 34,000. 
The pressure-drop parameter 9 i s  shown as a function of i n l e t  Reynolds number 
on logarithmic sca les .  The mixed flow va r i e s  over a range of i n l e t  Reynolds 
number from 2000 t o  10,000 with t h e  cases used. 

Figure 6(a) i l l u s t r a t e s  primarily t h e  co r re l a t ion  of r e s u l t s  with varying 
i n l e t  pressure. The r e s u l t s  f o r  a range of i n l e t  pressure p1 from 2 t o  
20 pounds per square inch absolute a r e  co r re l a t ed  t o  about +lo percent. 
po in ts  for an i n l e t  pressure of 1 and some f o r  2 pounds per square inch absolute 
(parametric var ia t ion ,  f i g .  10) f e l l  above t h e  other points as much as 70 percent 
because of high e x i t  Mach numbers and a r e  not shown. 

All 
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Figure 6(a)  shows r e s u l t s  f o r  tubes 4 f e e t  long and f o r  a tube 2 f e e t  long 
with twice the  heat  input  Q t o  maintain t h e  constant heat-input parameter cp. 
The poin ts  f o r  tubes 2 f e e t  long co r re l a t e  well ,  but  similar poin ts  (not shown) 
f o r  1-foot-long tubes deviate  s ign i f i can t ly ,  

The co r re l a t ion  of pressure-drop results obtained by numerical computation 
i s  shown i n  f igu re  6(b) f o r  various configurations having a heat-input parameter 
of 34,000 +2 percent.  

For t he  va r i a t ions  i n  f igu re  6(b) ,  t h e  r e s u l t s  general ize  t o  about +30 per- 
cent. The range i n  pressure drop cor re la ted  a t  each Reynolds number w a s  about 
100 t o  1 as a r e s u l t  of t he  assumed parametric var ia t ions .  

Brief ly ,  heat-input-parameter, Reynolds number, and pressure-drop- 
coe f f i c i en t  cor re la t ions  a re  v a l i d  f o r  long, s lender  tubes with flow Mach numbers 
l e s s  than 0.3 and pressure drops l e s s  than 10 percent.  The f l u i d  must be near ly  
a per fec t  gas, and the  heat-input p r o f i l e  along the  length of the tubes should 
reasonably approximate a f l a t  d i s t r ibu t ion .  

It should be noted t h a t  t h e  cor re la t ion  parameters do not general ize  changes 
i n  pressure drop due t o  changes i n  power d i s t r i b u t i o n  along the  tube. In  other 
words, r e s u l t s  from similar d i s t r ibu t ions  will cor re l a t e  each other,  but  r e s u l t s  
from a l t e r e d  d i s t r ibu t ions  may d i f f e r ,  depending on the  s i z e  of t he  changes. 

Predict ion of laminar i n s t a b i l i t y .  - From the  results shown it i s  poss ib le  
t o  d r a w  severa l  conclusions r e l a t e d  t o  t h e  laminar i n s t a b i l i t y  problem: 

(1) The conditions a t  m i n i m  pressure drop a r e  not well  defined f o r  two 
reasons. 
i s  d i f f i c u l t  t o  define,  Second, t he  p a r t i c u l a r  values used t o  e s t ab l i sh  laminar- 
turbulent  t r a n s i t i o n  c r i t e r i a  a r e  a r b i t r a r i l y  assumed. 

F i r s t ,  t h e  pressure-drop curve ( f i g s .  3 t o  6)  has a f la t  minimum t h a t  

( 2 )  The minimum pressure drop occurs a t  flows and pressure drops just l e s s  
than those a t  which the  flow i n  the  tube i s  e n t i r e l y  turbulent.  A r u l e  of thumb 
i s  suggested: 
of the  heated sec t ion  has laminar flow. 

The laminar i n s t a b i l i t y  i s  po ten t i a l ly  a problem whenever any p a r t  
- .~ 

(3) The v a l i d i t y  of predict ions of temperature r a t i o  a t  minimum pressure 
drop i s  a l s o  compromised by mixed flow and the  f l a t  minimum (as i s  (1) preced- 
ing) .  
much higher than about 5, as i s  predicted on the  bas i s  of purely laminar flow. 
For example, t he  temperature r a t i o  i n  f igu re  3 a t  the  minimum pressure drop i s  
about 17 .  

The temperature r a t i o  a t  t h e  minimum pressure drop, however, i s  of ten 

Influence of Design and Operating Conditions 

Most of t he  p r inc ipa l  conclusions a r r ived  a t  as a r e s u l t  of t h i s  analysis  
have been indicated.  It i s  of i n t e r e s t  now t o  inves t iga t e  by means of parametric 
var ia t ions  whether these  conclusions a r e  general  t o  a broad family of conditions 
and geometries, which may be of i n t e r e s t  i n  nuclear-rocket heat-exchanger design. 
3.1 a l l  t h e  following discussions,  the  working f l u i d  i s  para-hydrogen, and the  
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heat-input d i s t r i b u t i o n  t o  round tubes i s  constant i n  t h e  axial d i rec t ion .  

Ef fec t  of heated length. - The e f f e c t  of t h e  length  of t h e  heat-exchanger 
tube i s  shown-in f igu re  7 where t h e  same format i s  used as w a s  used previously. 
Where t h e  sample i s  4 f e e t  long, i n t e g r a l  lengths from 2 t o  6 f e e t  long a r e  con- 
sidered. As expected, pressure drop increases with length j  t h e  temperature 
r a t i o  a l s o  increases with length. The t r a n s i t i o n  from laminar t o  turbulen t  flow 
a t  t h e  i n l e t  i s  independent of length,  but t he  t r a n s i t i o n  t o  turbulen t  flow a t  
the  e x i t  occurs a t  higher flows and longer lengths. 

The s i g n i f i c a n t  r e s u l t  of f i gu re  7 i s  t h a t  t he  length  has l i t t l e  e f f e c t  on 
t h e  r e l a t i o n  between minimum pressure drop and the  pressure drop a t  the  t r ans i -  
t i o n  t o  a l l  turbulen t  flow. 

Effect . of tube diameter. - The influence of t h e  assumed passage diameter D 
The range of D i l l u s t r a t e d  i s  from on t h e  pressure drop i s  shown i n  f igu re  8. 

0.05 t o  0.30 inch, whereas the  previous r e s u l t s  considered only 0.10 inch. The 
tube length i s  again t h e  nominal value of 4 f e e t .  

For an equal heat f l u x  per u n i t  surface area, pressure drop and temperature 
r a t i o  vary inverse ly  w i t h  diameter, as expected. The region of mixed flow occurs 
a t  higher Mach numbers with s m a l l  tubes because of t he  diameter i n  Reynolds num- 
ber. Thus, t o  remove a given power from t he  tube surface,  a change i n  tube ai-  
ameter from 0.30 t o  0.05 inch or a r a t i o  of 6 w i l l  n eces s i t a t e  increasing the 
m i n i m u m  Mach number (or weight flow/area, w/A) by about 6 times t o  avoid poten- 
t i a l  i n s t a b i l i t i e s ;  however, t h e  pressure drop w i l l  increase about 150 times. 
These changes occur a t  about constant o u t l e t  temperature. Note that  the  minimum 
pressure drop i s  again i n  the  range of t he  t r a n s i t i o n  t o  a l l - tu rbulen t  flow. 

Effect of heat input ? a  gaseous i c l e t  conditions. - The e f f e c t  of varying 
t h e  l e v e l  of t h e - f l a t  heat-input d i s t r i b u t i o n  i s  considered i n  two pa r t s :  (1) a t  
low pressures where the  i n l e t  conditions a r e  gaseous, and ( 2 )  a t  higher pressures 
where l i q u i d  hydrogen occurs a t  i n l e t  conditions. Vapor-phase r e s u l t s  a r e  
avoided here in  by the  choice of i n l e t  conditions. 

For gaseous hydrogen a t  20 pounds per square inch absolute and f o r  50° R in- 
l e t  conditions, t he  heat input i s  var ied  from 0.1 t o  5 Btu per second per square 
foot,  as i l l u s t r a t e d  i n  f igu re  9 ( a )  i n  terms of pressure drop and temperature 
r a t i o ,  as shown previously. As an t ic ipa ted ,  increasing the  heat input t o  the  
f l u i d  increases t h e  temperature r a t i o ,  t he  pressure drop, and the  Mach number a t  
which t h e  o u t l e t  conditions w i l l  remain laminar. The t r a n s i t i o n  i s  a t  higher 
Mach numbers with higher heat input due t o  t h e  higher temperature r a t i o s  and sub- 
sequently t o  higher f i l m  v i scos i ty .  

To prevent t h e  tube o u t l e t  conditions from becoming laminar as heat input 
i s  increased 50 times as shown, t h e  i n l e t  Mach number must be increased about 
4 times, t h e  pressure drop must be increased about 100 times, w h i l e  t he  o u t l e t  
temperature will be increased from 200' t o  1800° R f o r  a change i n  temperature 
r a t i o  of 12 .  

The approximation t h a t  t he  minimum pressure drop and t h e  r i g h t  boundary of 
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t he  t r a n s i t i o n  region a r e  c lose together i s  noteworthy a t  high heat-input l e v e l s  
but l e s s  s ign i f i can t  a t  low heat input. For example, with 0.1 Btu per second 
per  square foot ,  t he  minimum occurs a t  a Mach number of about 0,002 r e l a t i v e  t o  
0,0036 f o r  t h e  t r ans i t i on ,  and the  pressure drop i s  a b o u t 1 0  percent l e s s .  

Effect  of heat input  at  l i q u i d  i n l e t  conditions, - Trends similar t o  those 
jus t  presented a r e  indicated i n  f igure  9(b) f o r  an inlet  pressure of 500 pounds 
per square inch absolute,  an in le t  temperature again of 50° R, and a heat-input 
from 1 t o  100 Btu per second per square foot .  

O f  s ignif icance i s  the  combination of high temperatures, l o w  i n l e t  Mach 
numbers, and low values of pressure drop associated with the  t r a n s i t i o n  t o  mixed 
flow. 
the  lowest curve i n  f igu re  9 ( b ) .  The higher curves a r e  shown here t o  ind ica te  
the  unl ikely probabi l i ty  of encountering the  laminar phenomena a t  a high pres-  
sure,  high heat-input condition without p r io r  overtemperature of t he  system. 

A discussion of t he  pressure e f f e c t  i s  forthcoming but i s  i l l u s t r a t e d  by 

Effect  of pressure l e v e l  a t  gas i n l e t  conditions. - The approximate _ -  _.  - 
pressure-drop r e l a t i o n  (eq, -(lb))' i nd ica t e s  t h a t  pressure drop should vary in-  
versely as the  o u t l e t  pressure. The an t ic ipa ted  t rend i s  shown i n  f igure  l O ( a )  
f o r  pressures of 1, 2, 5, 10, and 20 pounds per square inch absolute and a heat 
input of 0.1 Btu per second per square foot ,  

The unusually low heat input i s  used t o  allow pressures as l o w  as 1 pound 
per square inch absolute,  s ince  any higher heat input  cannot be removed by the  
f l u i d  without choking the  flow a t  e i t h e r  t he  l e f t  end because of t he  temperature 
r i s e  o r  a t  the  r i g h t  end of the  Mach number curve because of t h e  f r i c t i o n a l  pres- 
sure  drop. 
lower temperature r a t i o s  and possibly i n  the  laminar flow range. 

For t he  low heat input used, t he  minimum pressure drop occurs a t  

In  r e l a t i n g  t h e  laminar - ins tab i l i ty  problem t o  a multiple-passage heat ex- 
changer such as a reac tor  core, the  "average" e x i t  Mach number of t he  passages 
i s  r e l a t e d  t o  the  e x i t  nozzle throa t  a rea  and consequently t o  the  "average" pres- 
sure  drop imposed on any s ingle  tube under given conditions. 
d i t ions  leading t o  t h e  i n s t a b i l i t y  occur a t  pressure drops i n  the  range of 
average conditions, f o r  instance,  of the  order of 10 percent, w i l l  t he  ins ta -  
b i l i t y  be l i k e l y  t o  occur. These conditions a re  found a t  low pressure l eve l s  
with very l i t t l e  heat input  and a t  s l i g h t l y  higher pressures with higher heat 
input  (e.g., f i g .  g ( a ) ) .  

Only as flow con- 

Effec t  of pressure l e v e l  a t  l i q u i d  i n l e t  conditions. - Previous discussion 
has indicated t h a t  a t  high pressures the minimum pressure drop should be s m a l l  
and should occur a t  very low i n l e t  Mach numbers. 
f i gu re  10(b) f o r  pressures of 300, 500, and 1000 pounds per square inch absolute, 
where the  minimum pressure drop i s  1/10 percent or  less and the accompanying 
Mach number i s  0.00017 or l e s s .  

This indicat ion i s  v e r i f i e d  i n  

It i s  in t e re s t ing  t o  note, however, t h a t  the  temperature-ratio curves f o r  
t he  three  pressure l e v e l s  tend t o  merge, whereas they normally would be expected 
t o  separate because of varying weight flow as pressure var ies  (e.g., f i g .  l O ( a ) ) .  
The nonl inear i ty  i s  t h e  r e s u l t  of expanding l i q u i d  i n t o  gas a t  supe rc r i t i ca l  
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pressures,  where t h e  t e r m  (eq, (5)) absorbs a much l a rge r  port ion of 

t he  power input  than with a gas t o  gas expansion. 
place i n  the  temperature range up t o  100' t o  200' R, and therefore  t h e  curves 
become p a r a l l e l  above temperature r a t i o s  of about 3, as expected. 

The r ap id  expansion takes 

Effec t  of i n l e t  temperature a t  gas i n l e t  conditions.  - The influence of the 
i n l e t  teyperature- 'of t h e  para-hydrogen gas on the  s t a b i l i t y  c r i t e r i a  i s  pre- 
sented i n  f igu re  l l ( a ) .  
number with higher I n l e t  temperature because of the  increase i n  v iscos i ty .  
s ince  the  i n l e t  temperature increase i s  l a r g e r  than proportionate t o  the  o u t l e t  
temperature rise, the  i n l e t  ( l e f t )  t r a n s i t i o n  occus a t  r e l a t i v e l y  higher Mach 
number, and t h e  mixed-flow region decreases i n  s ize .  The minfmum pressure drop 
again occurs within the  t r ans i t i on ,  however. 

The region of mixed flow occurs a t  higher inlet  Mach 
Also, 

Effects--of ~~ i n l e t  temperature- a t  ~- l i q u i d  i n l e t  conditions.  - The pressure-drop 

The e f f e c t  i l l u s t r a t e d  i s  t h a t  of increasing 
and temperature-ratio curves f o r  an i n l e t  pressure of 500 pounds per square inch 
absolute  a r e  shown i n  f igu re  l l ( b ) .  
the  i n l e t  temperature from l i q u i d  conditions a t  50' R t o  cornpressed f l u i d  condi- 
t i ons  a t  150' R. A s  an t ic ipa ted ,  t he  pressure drops remain s m a l l ;  t he  minimum 
occurs a t  about ZX10-3 percent,  or two pa r t s  i n  10,000. A s  w i t h  the  low pres- 
sures ,  increasing i n l e t  temperature increases the  Mach number a t  which the mini- 
mum pressure drop and the  mixed-flow region occur. 

The influence of the  nonl inear i t ies  associated w i t h  t he  expansion of l i q u i d  
i n t o  gas a t  s u p e r c r i t i c a l  pressures ,  as discussed i n  regard t o  the  pressure ef-  
f e c t  i n  f igu re  10, i s  again evident i n  f igure  11, p a r t i c u l a r l y  w i t h  respec t  t o  
the  temperature-ratio curves, which coincidental ly  r e f l e c t  the  compensating ef-  
f e c t s  of changes i n  severa l  var iab les .  

CONCLUDING REMARKS 

A s teady-state  one-dimensional analysis  of the laminar - ins tab i l i ty  problem 
i s  described i n  r e l a t i o n  t o  geometries t yp ica l  of nuclear-rocket heat  exchangers. 
Results a r e  obtained by de ta i l ed  numerical i n t eg ra t ion  of the flow of r ea l - f lu id  
para-hydrogen i n  long tubes of s m a l l  c i r cu la r  cross sec t ion-  C r i t e r i a  f ix ing  
the  t r ans i t i ons  between laminar and turbulent  flow a r e  assumed and, as used, l ead  
t o  a hys te res i s  loop. 

A closed-form approximate so lu t ion  of the  heat- t ransfer  and flow r e l a t i o n s  
i s  a l s o  presented. Correlat ion parameters a r e  derived from the funct ional  r e -  
l a t i o n s  and a r e  used t o  general ize  the  computed numerical r e s u l t s  with reasonable 
accuracy, approximately +30 percent. The cor re la t ing  technique could, i n  addi- 
t i on ,  serve as a method of estimating pressure drops i n  long, slender tubes f o r  
flowing gaseous para-hydrogen at low Mach numbers. 

Results of p a m e t r i c  inves t iga t ions  ind ica te  t h a t  t h e  minimum pressure drop 
always occurs within, or i n  t he  proximity of,  the  t r a n s i t i o n  region; t h a t  I s ,  
where the  i n l e t  Reynolds number exceeds 2100 and the  e x i t  Reynolds number i s  l e s s  
than 1000. Thus, t h e  values at  minlmum pressure drop predicted by published 
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analyses based on laminar flow a r e  not appl icable  f o r  t he  range of long, slender 
tubes studied. For example, minimum pressure drop may occur a t  a temperature 
r a t i o  of 15 with mixed flow ra the r  than about 5 with laminar flow. Other assumed 
t r a n s i t i o n  c r i t e r i a  (within credible  limits) w i l l  modify this r e s u l t  only i n  de- 
tai l .  Consequently, t he  following r u l e  of thumb i s  suggested: 

The minimum pressure drop, and consequently t h e  po ten t i a l  i n s t a b i l i t y ,  
occurs j u s t  below t h e  flow and pressure drop a t  which the  e x i t  of the  passage 
becomes laminax. 

Several design considerations can be r e i t e r a t ed t  

1. The tube pressure drop, including the  min im"  pressure drop, var ies  in- 
versely as the  i n l e t  pressure squared, and the  minimum pressure drop occurs a t  
higher Mach numbers with lower pressures.  

2. The minimum pressure drop and t h e  Mach number a t  which it occurs in-  
crease with heat input. 

3, The tube length  has r e l a t i v e l y  less ef fec t ;  however, pressure drop and 
the  Mach number a t  t h e  minimum increase with length. 

4. For a given heat input  per u n i t  surface area,  the  minimum pressure drop 
and the  associated Mach number increase as the  diameter i s  decreased. 

5. It i s  suggested t h a t  t he  " ins t ab i l i t y"  i s  not r e l a t e d  t o  high-frequency 
gas dynamics and, thus, by inference i s  r e l a t e d  t o  the  w a l l  capacity and heat 
input.  Limited experimental evidence with s ing le  tubes ind ica tes  t h a t  a "flow 
stoppage" phenomenon, which i s  a r e l a t i v e l y  slow but i r r eve r s ib l e  process, re- 
sults. 

When the  preceding conclusions a r e  r e l a t e d  t o  a design problem, it i s  f i r s t  
c lear  t h a t  during high-pressure operation at normal Mach numbers (> 0.01) t h e  
p o s s i b i l i t y  of encountering laminar i n s t a b i l i t i e s  i s  s l i m  indeed. During low- 
pressure operation, such as i s  an t ic ipa ted  f o r  reac tor  af tercool ing and poten- 
t i a l l y  may be encountered during s t a r t u p  or shutdown procedures, the  laminar- 
i n s t a b i l i t y  problem m a y  represent  a ser ious t h r e a t  t o  s t r u c t u r a l  i n t eg r i ty .  
Within the  cons t ra in t  of a pa r t i cu la r  design, t he  problem i s  most l i k e l y  at l o w  
flows, high heat input, and subsequently a t  the  high fluid-temperature r a t i o s  
consis tent  with high w a l l -  t o  i n l e t - f l u i d  temperature r a t i o s .  

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, September 6, 1963 
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APPENDM A 

SYMBOLS 

A 

C 

cP 

cv 

D 

f 

g 

H 

h 

k 

M 

m 

n 

P 

Pr  

Q 

9 

R 

Re 

rh 

S 

T 

U 

area,  sq  f t  

sonic velocity,  f t / s ec  

spec i f i c  heat a t  constant pressure,  Btu/(lb) (%) 

spec i f ic  heat at constant volume, Btu/(lb) (%) 

diameter, f t  

Fanning f r i c t i o n  f ac to r  

standard accelerat ion due t o  grav i ty  

enthalpy, Btu/lb 

surface coef f ic ien t  i n  convection, Btu/(sec) (OR)  

thermal conductivity, Btu/(f t )  (see) (OR)  

Mach number 

exponent of v i scos i ty  va r i a t ion  with temperature, eq. (B6) 

exponent of f r i c t i o n  fac tor  va r i a t ion  with Reynolds number, eq. (B5) 

pressure,  1b/sq f t  

Prandtl  number 

heat input per u n i t  surface area, Btu/( see) ( s q  f t )  

heat input per pound of f lu id ,  eq. ( 3 )  

gas constant, f t / "R 

Reynolds number 

hydraulic radius, f t  ( r h  = D/4 

entropy, f t - lb / ( lb)  (%) 

temperature, OR 
veloci ty ,  ft/s ec 

for round tubes) 
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V 

W 

X 

r 
)1 

P 

z 

cp, II, 

spec i f i c  volume, cu f t / l b  

weight flow rate, lb/sec 

distance,  f t  

r a t i o  of spec i f i c  heats,  c /c 

v i scos i ty ,  lb/(  sec)  ( f t )  

density,  lb/cu f t  

temperature r a t i o ,  T ~ / T ~  

co r re l a t ing  parameters, eq. (15) 

P v  

Subscripts:  

b evaluated a t  bulk conditions 

f evaluated a t  f i l m  conditions 

h surface coef f ic ien t ,  Btu/(sec) (%) 

W w a l l  

1 i n l e t  

2 o u t l e t  

0 i n i t i a l  constant 
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APPENDIX B 

ONE-DIMENSIONAL FLOW RELATIONS 

For steady flow (a/& = 0) t h e  r e l a t i o n s  governing cont inui ty  of m a s s ,  mo- 
mentum, and an energy r e l a t i o n  from equations (1) , ( 2 )  , and (5) a r e  

- +  dP 
P 

(Momentum) 

- + -  q f  
rh 

For flow passages of 
i s  expressed as 

The equation of s t a t e  f o r  

constant cross-sectioiial area,  t h e  c o n t h u i t y  of m a s s  

a p e r f e c t  gas i n  d i f f e r e n t i a l  form i s  

Subs t i t u t ing  i n t o  t h e  momentum and energy equations (eqs. ( 2 )  t o  ( 4 ) )  y i e lds  

d x = o  dp u2 dp u2 dT f u2 
P g P  g T  2 r h g  

Eliminating dT, s u b s t i t u t i n g  p = pRT, and co l l ec t ing  t e r m s  l e a d  t o  

"he following r e l a t i o n s  a r e  based on the  sonic ve loc i ty  
nuinber M2 = u2/C2 : 

C2 = TgRT and t h e  Mach 

17 



Assume now that the Mach number is s m a l l  relative to 1. 
static-temperature rise is related to the heat input by 

Consequently, the 

A d x  wep dT 1~ Q - 
rh 

After second-order Mach number terms axe dropped and the expression i s  multiplied 
through by pp = p *  pRT, these substitutions yield 

p dp + R g ( E )  w 2  (IT + T dx) = 0 
2rh 

Integrating along the flow passage gives 

The friction factor f is approximated as a function of Reynolds number, or 

f0 f(x) = - = 
Ren krh(:)]” 

and the viscosity p is assumed a function of temperature: 

Linearizing the pressure-difference term and substituting the friction factor and 
viscosity assumptions (eqs. (B5) and ( B 6 ) )  into equation (B4) lead to 

f 

Finally, assume a constant heat-input distribution along the tube, so that 
Q(x) = Qo. Then, from equation (BZ), 

18 



The in t eg ra l  i n  equation (B7) i s  evaluated as 

x=o x=o 

=* ( y + 2  - Ty+2)  
mn + 2 )  

Ty+L g , + 2  - 1) 
=- T - 1  

where the  temperature r a t i o  T E Tz/T1. 
simplifying by v i r t u e  of equations (B5) and (B6) y i e l d  

Subs t i tu t ing  back i n t o  equation (B7) and 

or, f i n a l l y  

It i s  convenient, however, t o  use the  pressure drop i n  r a t i o  form. 
with Mach number as the  coef f ic ien t ,  equation (B8) becomes 

I n  t h a t  case, 

The possible  minimum value of pressure drop Ap/p as weight flow i s  var ied  
F i r s t ,  t h e  equation i s  a t  constant heat input i s  determined from equation (B8).  

wr i t ten  with weight flow per u n i t  a rea  as t h e  primary var iab le :  

19 



I 

L 

f 

The f i rs t  term represents  t he  momentum pressure drop and i s  always pos i t i ve  if 
the  hea t  i s  added t o  the  f lu id .  Thus, for t h e  s lope t o  be negative the  bracketed 
term must be negative, or 

For l a rge  temperature r a t i o s ,  where T ~ + ~  >> 1, 

(3 - n)T - (mn + 2 ) ( ~  - 1) < - o 
and f o r  a negative slope t o  OCCUT 

n + m n > l  

This r e l a t i o n  i s  discussed i n  t h e  A N A L Y S ~  sec t ion  of t h e  report .  
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